Giáo dục

Cách giải phương trình bậc 2

Phương trình bậc 2 là gì?

Phương trình bậc 2 là phương trình có dạng ax2+bx+c=0 (a≠0) (1).

Giải phương trình bậc 2 là đi tìm các giá trị của x sao cho khi thay x vào phương trình (1) thì thỏa mãn ax2+bx+c=0

Bạn đang xem bài: Cách giải phương trình bậc 2

Giải phương trình bậc 2

cach giai phuong trinh bac 2 1

Bước 1: Tính Δ=b2-4ac

Bước 2: So sánh Δ với 0

  • Δ phương trình (1) vô nghiệm
  • Δ = 0 => phương trình (1) có nghiệm kép x_{1} =x_{2} = - frac{b}{2a}
  • Δ > 0 => phương trình (1) có 2 nghiệm phân biệt, ta dùng công thức nghiệm sau:

x_{1} =frac{-b+sqrt{triangle } }{2a} và x_{2} =frac{-b-sqrt{triangle } }{2a}

Mẹo nhẩm nghiệm phương trình bậc 2 nhanh:

  • Nếu a+b+c=0 thì x= 1, x= c/a
  • Nếu a-b+c=0 thì x= -1, x= -c/a
giai phuong trinh bac 2 1

Ví dụ giải phương trình bậc hai

Giải phương trình 4x– 2x – 6 = 0 (2)

Δ=(-2)– 4.4.(-6) = 4 + 96 = 100 > 0 => phương trình (2) đã cho có 2 nghiệm phân biệt.

x_{1} =frac{-(-2)+sqrt{100} }{2.4} =tfrac{3}{2} và x_{2} = frac{-(-2)-sqrt{100} }{2.4} =-1

Bạn cũng có thể nhẩm theo cách nhẩm nghiệm nhanh, vì nhận thấy 4-(-2)+6=0, nên x1 = -1, x2 = -c/a = -(-6)/4=3/2. Nghiệm vẫn giống ở trên.

Giải phương trình 2x– 7x + 3 = 0 (3)

Tính Δ = (-7)– 4.2.3 = 49 – 24= 25 > 0 => (3) có 2 nghiệm phân biệt:

x_{1} =frac{-(-7)+sqrt{25} }{2.2} = 3 và x_{1} =frac{-(-7)-sqrt{25} }{2.2} = frac{1}{2}

Để kiểm tra xem bạn đã tính nghiệm đúng chưa rất dễ, chỉ cần thay lần lượt x1, x2 vào phương trình 3, nếu ra kết quả bằng 0 là chuẩn. Ví dụ thay x1, 2.32-7.3+3=0.

Giải phương trình 3x2 + 2x + 5 = 0 (4)

Tính Δ = 2– 4.3.5 = -56 phương trình (4) vô nghiệm.

Giải phương trình x2 – 4x +4 = 0 (5)

Tính Δ = (-4)– 4.4.1 = 0 => phương trình (5) có nghiệm kép:

x_{1} =x_{2} =frac{-(-4)}{2.1} =2

Thực ra nếu nhanh ý, bạn cũng có thể nhìn ra đây chính là hằng đẳng thức đáng nhớ (a-b)= a– 2ab + b2 nên dễ dàng viết lại (5) thành (x-2)= 0 x=2.

Phân tích thành nhân tử

Nếu phương trình (1) có 2 nghiệm phân biệt x1, x2, lúc nào bạn cũng có thể viết nó về dạng sau: ax+ bx + c = a(x-x1)(x-x2) = 0.

Trở lại với phương trình (2), sau khi tìm ra 2 nghiệm x1, x2 bạn có thể viết nó về dạng: 4(x-3/2)(x+1)=0.

Đi liền với phương trình bậc 2 còn có định lý Vi-et với rất nhiều ứng dụng như tính nhẩm nghiệm phương trình bậc 2 đã nói ở trên, tìm 2 số khi biết tổng và tích, xác định dấu của các nghiệm, hay phân tích thành nhân tử. Đây đều là những kiến thức cần thiết sẽ gắn liền với bạn trong quá trình học đại số, hay các bài tập giải và biện luận phương trình bậc 2 sau này, nên cần ghi nhớ kỹ và thực hành cho nhuần nhuyễn.

Phương trình bậc 2 một ẩn

Cho phương trình sau: ax2+bx+c=0 (a≠0), được gọi là phương trình bậc 2 với ẩn là x.

Công thức nghiệm: Ta gọi Δ=b2-4ac.Khi đó:

  • Δ>0: phương trình tồn tại 2 nghiệm:.
4k9rum vvp 9f8e9vyoidaktctmc4clmmkcodrntp5fr2pmr5jg7xbzpdaessqzncg3fpekuzqk2cu2 nrx7zmxpe0tcbrtpzwbbxgpvx hp1mmrnlchssbwhbpva9t5b1qzeiyt 1
  • Δ=0, phương trình có nghiệm kép x=-b/2a
  • Δ

Trong trường hợp b=2b’, để đơn giản ta có thể tính Δ’=b’2-ac, tương tự như trên:

  • Δ’>0: phương trình có 2 nghiệm phân biệt.
0hzdzvb5a0cb3qitirvhzpn8fbyavei3njucmyntpegtbvgo4n97forngsxxzo vsdrzkza7remnlo2bfns
  • Δ’=0: phương trình có nghiệm kép x=-b’/a
  • Δ’

Định lý Viet và ứng dụng trong phương trình bậc 2 một ẩn

Cho phương trình bậc 2 một ẩn: ax2+bx+c=0 (a≠0). Giả sử phương trình có 2 nghiệm x1 và x2, lúc này hệ thức sau được thỏa mãn:

saplkj4v gpkwpvjhjsnqasgyrjc2gdwrvpzlzx2mg4fvmagwxbfxmhflesosqpe5zd6 bqp6uldrxmbew5ks1umw3gdiqik9bpn8pn 4we2aa4d005dqlg3ioccrp yjwg8ly

Dựa vào hệ thức vừa nêu, ta có thể sử dụng định lý Viet để tính các biểu thức đối xứng chứa x1 và x2

  • x1+x2=-b/a
  • x12+x22=(x1+x2)2-2x1x2=(b2-2ac)/a2

Nhận xét: Đối với dạng này, ta cần biến đổi biểu thức làm sao cho xuất hiện (x1+x2) và x1x2 để áp dụng hệ thức Viet.

Định lý Viet đảo

Giả sử tồn tại hai số thực x1 và x2 thỏa mãn: x1+x2=S, x1x2=P thì x1 và x2 là 2 nghiệm của phương trình x2-Sx+P=0

Một số ứng dụng thường gặp của định lý Viet trong giải bài tập toán

  • Nhẩm nghiệm phương trình bậc 2: cho phương trình ax2+bx+c=0 (a≠0), 
    • Nếu a+b+c=0 thì phương trình có nghiệm x1=1 và x2=c/a
    • Nếu a-b+c=0 thì phương trình có nghiệm x1=-1 và x2=-c/a
  • Phân tích đa thức thành nhân tử: cho đa thức P(x)=ax2+bx+c nếu x1 và x2 là nghiệm của phương trình P(x)=0 thì đa thức P(x)=a(x-x1)(x-x2)
  • Xác định dấu của các nghiệm: cho phương trình ax2+bx+c=0 (a≠0), giả sử x1 và x2 là 2 nghiệm của phương trình. Theo định lý Viet, ta có:
psykb1cw5vminienvuht0l3hsdj7lfsvqyvye3ywvzcbmjdqdqm c2otgjor8627toukla7b290cftkot5 ch3it0oqpldfy8j jqrtehge6jeq1nobgfhe 8ga1pjepis9fca v 1
  • Nếu S2 trái dấu.
  • Nếu S>0, x1 và x2 cùng dấu:
    • P>0, hai nghiệm cùng dương.
    • P

Dạng bài tập về phương trình bậc 2 một ẩn

Dạng 1: Bài tập phương trình bậc 2 một ẩn không xuất hiện tham số

Để giải các phương trình bậc 2, cách phổ biến nhất là sử dụng công thức tính Δ hoặc Δ’, rồi áp dụng các điều kiện và công thức của nghiệm đã được nêu ở mục I.

Ví dụ 1: Giải các phương trình sau:

  1. x2-3x+2=0
  2. x2+x-6=0

Hướng dẫn:

  1. Δ=(-3)2-4.2=1. Vậy
jzhhp8a4tatkovc dk4mc3jsz1ewp ordxzfiry7wdfhefwaf9kvyr7aloq29 d

Ngoài ra, ta có thể áp dụng cách tính nhanh: để ý 

suy ra phương trình có nghiệm là x1=1 và x2=2/1=2

  1. Δ=12-4.(-6)=25. Vậy
tt6knyzpqsmuaxyso oc1gz1uticujo8kulksfgf ossm1pltdct7 rske9npvzvuu0ue0qln5zt1rytfbcb1mt0i eornw3h ru 7f32c2aqhort52tsbrkmqox98nd ljmhplr

Tuy nhiên, ngoài các phương trình bậc 2 đầy đủ, ta cũng xét những trường hợp đặc biệt sau:

Phương trình khuyết hạng tử.

Khuyết hạng tử bậc nhất: ax2+c=0 (1).

Phương pháp:

  • 4uhpbydanbil6i9qptanaz8b1ljicp8zqa 6hjb5ajqva8zhfrwi2lzf0amilcspqg3y yk f1x3chs7khtg1ty7lpoxzjp akvv8c mulyl6lfjo
  • Nếu -c/a>0, nghiệm là:
3m0ticxbzvperz1jj9gkgz6afczw0
  • Nếu -c/a=0, nghiệm x=0
  • Nếu -c/a

Khuyết hạng tử tự do: ax2+bx=0 (2). Phương pháp:

  • vu7sg95auhroftjlv4hvfrnbpt9ovdgqgivvmicse1vunjpgzlcdqxv8xosfrxun3xo a5fwpqiloefob55mepqe5tqhkfvt13ui4lsqia7zaul8tuvspj228dfv5seu57b5ovid

Ví dụ 2:  Giải phương trình:

  1. x2-4=0
  2. x2-3x=0

Hướng dẫn:

  1. x2-4=0 ⇔ x2=4 ⇔ x=2 hoặc x=-2
  2. x2-3x=0 ⇔ x(x-3)=0 ⇔ x=0 hoặc x=3

Phương trình đưa về dạng bậc 2.

Phương trình trùng phương: ax4+bx2+c=0 (a≠0):

  • Đặt t=x2 (t≥0).
  • Phương trình đã cho về dạng: at2+bt+c=0
  • Giải như phương trình bậc 2 bình thường, chú ý điều kiện t≥0

Phương trình chứa ẩn ở mẫu:

  • Tìm điều kiện xác định của phương trình (điều kiện để mẫu số khác 0).
  • Quy đồng khử mẫu.
  • Giải phương trình vừa nhận được, chú ý so sánh với điều kiện ban đầu.

Chú ý: phương pháp đặt  t=x2 (t≥0) được gọi là phương pháp đặt ẩn phụ. Ngoài đặt ẩn phụ như trên, đối với một số bài toán, cần khéo léo lựa chọn sao cho ẩn phụ là tốt nhất nhằm đưa bài toán từ bậc cao về dạng bậc 2 quen thuộc. Ví dụ, có thể đặt t=x+1, t=x2+x, t=x2-1…

Ví dụ 3: Giải các phương trình sau:

  1. 4x4-3x2-1=0
  2. kzfwtg9gkbgaij5kz9wtlwa3cv33yglc smnc3i xus8qms0cdckusxrdhf95xxhjqmg igwmgpqbobvjaqeymg gc5kuyu5vgztg7dmqtvg07x48nackg

Hướng dẫn:

  1. Đặt t=x2 (t≥0), lúc này phương trình trở thành:

4t2-3t-1=0, suy ra t=1 hoặc t=-¼

  • t=1 ⇔ x2=1  ⇔ x=1 hoặc x=-1.
  • t=-¼ , loại do điều kiện t≥0

Vậy phương trình có nghiệm x=1 hoặc x=-1.

  1. Ta có:
phuong trinh chua an o mau 1

Dạng 2: Phương trình bậc 2 một ẩn có tham số

Biện luận số nghiệm của phương trình bậc 2.

Phương pháp: Sử dụng công thức tính Δ, dựa vào dấu của Δ để biện luận phương trình có 2 nghiệm phân biệt, có nghiệm kép hay là vô nghiệm.

Ví dụ 4: Giải và biện luận theo tham số m: mx2-5x-m-5=0 (*)

Hướng dẫn:

Xét m=0, khi đó (*) ⇔ -5x-5=0 ⇔ x=-1

Xét m≠0, khi đó (*) là phương trình bậc 2 theo ẩn x.

  • wqleuwsyzy8esvfvv8proyi6qehaflwysii1idq6iqqsv3qcismiinuoyuuhzc2invd5f a1i 38pqh6kutduowim 3cuwsbeqgxbxrt6xj urzy6b7v82i3g7z6pbqjympykvse
  • Vì Δ≥0 nên phương trình luôn có nghiệm:
    • Δ=0  ⇔ m=-5/2, phương trình có nghiệm duy nhất.
    • Δ>0 ⇔ m≠-5/2, phương trình có 2 nghiệm phân biệt:
8b8nmxthu8gjh02dwbm283jd ntmeudghcled6wraa416oznjwnsjdboy c fra32sk7s14r7bplqwqbtgwewdrglzfleaxm myfkvmlmt1a482e0uoptvoskf0w8v0ng8ftafn9

Xác định điều kiện tham số để nghiệm thỏa yêu cầu đề bài.

Phương pháp: để nghiệm thỏa yêu cầu đề bài, trước tiên phương trình bậc 2 phải có nghiệm. Vì vậy, ta thực hiện theo các bước sau:

  • Tính Δ, tìm điều kiện để Δ không âm.
  • Dựa vào định lý Viet, ta có được các hệ thức giữa tích và tổng, từ đó biện luận theo yêu cầu đề.
xac dinh dieu kien tham so de nghiem thoa yeu cau de bai 1

Ví dụ 5: Cho phương trình x2+mx+m+3=0 (*). Tìm m để phương trình (*) có 2 nghiệm thỏa mãn:

uiju 87jqmabey co67uu9eddxxemfsd8xvyowm0j usiixklio91vb2 h2gefankzlzjywh5k2k4ymuv7eb qjhmcgnuvcpiuyas lk 5t9c whk0plfmdojlumofrl5w62cvg1

Hướng dẫn:

Để phương trình (*) có nghiệm thì:

qjetoer70xrpqpzykwu0qd4tzhkcxpcmd9vlvcoexsdlr1zbiq7p2kgu9eupees xfr6oyaplcgfsbovs2 br9xnksbplwtawdh9qjqn46jnfwoorv1a

Khi đó, gọi x1 và x2 là 2 nghiệm, theo định lý Viet:

otubcs8fgffabi5f9c5q6upqlhjot3mujxz6tmetpterwoi6az5 cnfbfpbsdbxmi0szduhbrjmioo vaq8dfeebncitjzuqrot zpqvydyslzn99iqkikkpmidr5di2j4tikf

Mặt khác:

m4agjgvps5ggpmtxu5gk2e2u3gnkpitwryw8g0jnhz6nrzlf5sg8wspuco3abp5t5aynjhixlagencuc5 kaqexwabrkjfhquk1yoyp 8

Theo đề:

hq39vzkhvzxvkaqdmyrjkyak4 dolbbbx mtvvdzicjjlwbwifg6rmxij0gpu3vqydynyldkxy7hpf5dje z3l0giodbjuxofknj01dn h7onqmq

Thử lại:

  • Khi m=5, Δ=-7
  • Khi m=-3, Δ=9 >0 (nhận)

vậy m = -3 thỏa yêu cầu đề bài.

1635227883 528 bai tap 1 1
bai tap 2 3
bai tap 3 2
bai 4 4
bai 5 4

Lịch sử

Ngay từ năm 2000 trước Công Nguyên, các nhà toán học Babylon đã có thể giải những bài toán liên quan đến diện tích và các cạnh của hình chữ nhật. Có bằng chứng chỉ ra thuật toán này xuất hiện từ triều đại Ur thứ ba. Theo ký hiệu hiện đại, các bài toán này thường liên quan đến việc giải hệ gồm hai phương trình:{displaystyle x+y=p, xy=q}{displaystyle x+y=p,  xy=q}

tương đương với phương trình:

{displaystyle x^{2}+q=px}

Các bước giải được người Babylon đưa ra như sau:

  1. Tính p/2.
  2. Bình phương kết quả tìm được.
  3. Trừ đi q.
  4. Tính căn bậc hai bằng bảng căn bậc hai.
  5. Cộng kết quả của bước (1) và (4) để tìm x. Điều này về cơ bản là tương đương với việc tính {displaystyle x={frac {p}{2}}+{sqrt {left({frac {p}{2}}right)^{2}-q}}}

Ở Babylon, Ai Cập, Hy Lạp, Trung Quốc, và Ấn Độ, phương pháp hình học được sử dụng để giải phương trình bậc hai. Tài liệu Berlin Papyrus của người Ai Cập có từ thời Trung vương quốc (từ năm 2050 đến 1650 trước CN) có chứa lời giải của phương trình bậc hai hai số hạng.[14] Trong nguyên bản kinh Sulba Sutras, khoảng thế kỷ 8 trước CN, phương trình bậc hai dạng ax2 = c và ax2 + bx = c được khảo sát bằng phương pháp hình học. Các nhà toán học Babylon từ khoản năm 400 trước CN và các nhà toán học Trung Quốc từ khoảng năm 200 trước CN đã sử dụng phương pháp phân chia hình học để giải các phương trình bậc hai với nghiệm dương.[15][16] Cuốn Cửu chương toán thuật của người Trung Quốc có ghi những quy tắc của phương trình bậc hai.[16][17] Trong những phương pháp hình học thuở đầu này không xuất hiện một công thức tổng quát. Tới khoảng năm 300 trước CN, nhà toán học Hy Lạp Euclid đã cho ra một phương pháp hình học trừu tượng hơn. Với cách tiếp cận hoàn toàn bằng hình học, Pythagoras và Euclid đã tạo dựng một phương pháp tổng quan để tìm nghiệm của phương trình bậc hai. Trong tác phẩm Arithmetica của mình, nhà toán học Hy Lạp Diophantus đã giải phương trình bậc hai, tuy nhiên chỉ cho ra một nghiệm, kể cả khi cả hai nghiệm đều là dương.[18]

Vào năm 628 CN, Brahmagupta, một nhà toán học Ấn Độ đưa ra lời giải rõ ràng đầu tiên (dù vẫn chưa hoàn toàn tổng quát) cho phương trình bậc hai ax2 + bx = c như sau: “Nhân số tuyệt đối (c) với bốn lần hệ số bình phương, cộng với bình phương hệ số số hạng ở giữa; căn bậc hai toàn bộ, trừ đi hệ số số hạng ở giữa, rồi chia cho hai lần hệ số bình phương là giá trị.” (Brahmasphutasiddhanta, Colebrook translation, 1817, tr 346)[13]:87 Điều này tương đương:

{displaystyle x={frac {{sqrt {4ac+b^{2}}}-b}{2a}}.}

Thủ bản Bakhshali ra đời ở Ấn Độ vào thế kỷ 7 CN có chứa một công thức đại số cho việc giải phương trình bậc hai, cũng như những phương trình vô định. Muhammad ibn Musa al-Khwarizmi đi xa hơn trong việc cung cấp một lời giải đầy đủ cho phương trình bậc hai dạng tổng quát,[19] ông cũng đã mô tả phương pháp phần bù bình phương và thừa nhận rằng biệt thức phải dương,[19][20]:230 điều đã được ‘Abd al-Hamīd ibn Turk (Trung Á, thế kỷ 9) chứng minh. Turk là người đưa ra những biểu đồ hình học chứng minh rằng nếu biệt thức âm thì phương trình bậc hai vô nghiệm.[20]:234 Trong khi bản thân al-Khwarizmi không chấp nhận nghiệm âm, các nhà toán học Hồi giáo kế tục ông sau này đã chấp nhận nghiệm âm cũng như nghiệm vô tỉ.[19]:191[21] Cá biệt Abū Kāmil Shujā ibn Aslam (Ai Cập, thế kỷ 10) là người đầu tiên chấp nhận các số vô tỉ (thường ở dạng căn bậc hai, căn bậc ba hay căn bậc bốn) là nghiệm hay là hệ số của phương trình bậc hai.[22] Nhà toán học Ấn Độ thế kỷ thứ 9 Sridhara đã viết ra các quy tắc giải phương trình bậc hai.[23]

Nhà toán học người Do Thái Abraham bar Hiyya Ha-Nasi (thế kỷ 12, Tây Ban Nha) là tác giả cuốn sách đầu tiên của người châu Âu có chứa lời giải đầy đủ cho phương trình bậc hai dạng tổng quát.[24] Giải pháp của Ha-Nasi dựa nhiều vào tác phẩm của Al-Khwarizmi.[19] Lần đầu tiên hệ số âm của ‘x’ xuất hiện trong tác phẩm của nhà toán học người Trung Quốc Yang Hui (1238–1298 CN), dù vậy ông cho điều này là từ nhà toán học Liu Yi ở thời trước đó.[25] Vào năm 1545 Gerolamo Cardano biên soạn các tác phẩm liên quan đến phương trình bậc hai. Công thức nghiệm cho mọi trường hợp lần đầu đạt được bởi Simon Stevin vào năm 1594.[26] Năm 1637 René Descartes công bố tác phẩm La Géométrie trong đó có chứa công thức nghiệm mà chúng ta biết ngày nay. Lời giải tổng quát xuất hiện lần đầu trong tài liệu toán học hiện đại vào năm 1896, bởi Henry Heaton.

Bản quyền bài viết thuộc Trường Trung Cấp Nghề Thương Mại Du Lịch Thanh Hoá. Mọi hành vi sao chép đều là gian lận!
Nguồn chia sẻ: https://tmdl.edu.vn https://tmdl.edu.vn/cach-giai-phuong-trinh-bac-2/

Trang chủ: tmdl.edu.vn
Danh mục bài: Giáo dục

Lương Sinh

Lương Sinh là một tác giả đầy nhiệt huyết trong lĩnh vực giáo dục, ngoại ngữ và kiến thức. Với hơn 10 năm kinh nghiệm làm việc trong ngành, cô đã tích lũy được rất nhiều kiến thức và kỹ năng quan trọng. Với tình yêu với ngôn ngữ và mong muốn chia sẻ kiến thức, Lương Sinh đã quyết định sáng lập blog tmdl.edu.vn. Trang web này không chỉ là nơi chia sẻ những kinh nghiệm và kiến thức cá nhân của cô, mà còn là một nguồn thông tin hữu ích cho những người quan tâm đến giáo dục, kiến thức và ngoại ngữ. Đặc biệt là tiếng Anh và tiếng Trung Quốc.
Back to top button