Giáo dục

Cách giải phương trình bậc hai cực hay và cách nhẩm nghiệm nhanh chóng

Cách giải phương trình bậc hai cực hay và cách nhẩm nghiệm nhanh chóng

Lý thuyết về phương trình bậc hai cũng như cách giải phương trình bậc hai học sinh đã được tìm hiểu trong chương trình Toán 9, phân môn Đại số. Nhằm giúp các bạn học sinh nắm vững hơn các kiến thức cần ghi nhớ về chyên đề Toán 9 khá quan trọng này, Trường Trung Cấp Nghề Thương Mại Du Lịch Thanh Hoá đã chía sẻ bài viết sau đây. Bạn tìm hiểu nhé !

I. LÝ THUYẾT VỀ PHƯƠNG TRÌNH BẬC HAI

Bạn đang xem bài: Cách giải phương trình bậc hai cực hay và cách nhẩm nghiệm nhanh chóng

1. Phương trình bậc hai là gì?

0nl1tpzysaqbhd84dbyewcqcmhemzrt3o5xihity 1

Phương trình bậc hai là phương trình có dạng: ax2 + bx + c = 0. Với

  • x là ẩn số
  • a, b, c là các số đã biết sao cho: a ≠ 0
  • a, b, c là những hệ số của phương trình và có thể phân biệt bằng cách gọi tương ứng với hệ số của x (theo phương trình trên thì a là hệ số bậc hai, b là hệ số bậc một, c là hằng số hay số hạng tự do).

2. Ví dụ

Sau đây là 1 số ví dụ.

a) 2x² + 5x + 3 = 0 

Trong phương trình này: hệ số a = 2, b = 5, c = 3. Đây là phương trình bậc hai một ẩn.

b) x² – 3x = 0 

Phương trình hơi khác chút:
+ Hệ số đâu nhỉ? a = 1 và ta không cần viết “1.x²“
+ Hệ số b = − 3
+ Và c bằng mấy? c = 0 nên không cần viết.

Phương trình trên là phương trình bậc hai một ẩn.

c) − x² = 0 

Các hệ số a = − 1, b = c = 0. Đây là phương trình bậc hai một ẩn.

II. CÁCH GIẢI PHƯƠNG TRÌNH BẬC HAI CỰC HAY

fh1owjyfbvgipkme1ailcanu5rivewfsuh1dsysg

Cách 1: Phân tích vế trái của phương trình thành nhân tử

Ví dụ:

x² − 3x − 4 = 0 

⇔ x² + x − 4x − 4 = 0

⇔ x(x+1) − 4(x − 4) = 0

⇔ (x + 1)(x − 4) = 0

⇔ x =  −1 hoặc x = 4.

Cách 2: Tạo ra bình phương bằng cách thêm bớt

Ví dụ: x² + 4x − 5 = 0

⇔ x² + 2.2.x + 2² − 9 = 0 ( vì 5 = 4 − 9)

⇔ (x + 2)² = 9

⇔ x + 2 = − 3 hoặc x + 2 = 3

⇔ x  = − 5  hoặc x  = 1.

Những cách trên không phải áp dụng được cho tất cả các phương trình.

VẬY, có cách nào giúp ta giải phương trình bậc hai bất kì hay không? 

Câu trả lời là CÓ cách sau đây:

Cách 3: Áp dụng công thức nghiệm.

Ta có công thức nghiệm tổng quát để giải phương trình bậc hai bất kì. Chi tiết như sau.

CÔNG THỨC NGHIỆM TỔNG QUÁT

Bước 1: Tính  Δ = b² − 4ac.

Bước 2: Xét dấu của Δ.

  • Nếu Δ > 0 thì phương trình có hai nghiệm phân biệt:

             ctnmoi

  • Nếu Δ = 0 thì phương trình có nghiệm kép (hai nghiệm trùng nhau)

               nkep

  • Nếu Δ < 0 thì phương trình vô nghiệm.

Thay các hệ số a, b, c vào công thức rồi tính là xong.

Ví dụ 1: Giải phương trình bậc hai sau:

3x² + 5x − 1 = 0

Ta có: a = 3, b = 5, c = − 1. 

Δ’ = b² − ac = 5² − 4.3.(− 1) = 25 + 12 = 37 > 0.

⇒  phương trình có hai nghiệm phân biệt là:

nghiemvd1

Chú ý:

Nếu a và c trái dấu (a.c < 0) thì Δ = b² − 4ac > 0.

⇒  phương trình có hai nghiệm phân biệt.

Nếu trong trường hợp b là số chẵn thì ta có thể đặt b = 2b’ và áp dụng công thức sau để giải phương trình bậc hai.

Công thức nghiệm RÚT GỌN

Bước 1: Tính  Δ’ = b’² − ac.

Bước 2: Xét dấu của Δ’.

  • Nếu Δ’ > 0 thì phương trình có hai nghiệm phân biệt:
công thức nghiệm rút gọn giải phương trình bậc hai một ẩn
  • Nếu Δ’ = 0 thì phương trình có nghiệm kép (hai nghiệm trùng nhau).
công thức nghiệm kép rút gọn giải phương trình bậc hai một ẩn
  • Nếu Δ’ < 0 thì phương trình vô nghiệm.
Ví dụ 2: Giải phương trình bậc hai sau:

5x² + 4x − 1 = 0

Giải: Ta có: a = 5, b’ = 2, c = − 1. 

Δ’ = b’² − ac = 2² − 5.(− 1) = 9 > 0.

⇒  phương trình có hai nghiệm phân biệt là:

giải phương trình bậc hai ví dụ 2

Cách 4: Giải phương trình bậc hai bằng cách sử dụng máy tính

Cách bấm máy tính bỏ túi CASIO FX570 để giải được phương trình bậc hai như sau:

Bước 1: Chọn lệnh giải phương trình bậc nhất 2 ẩn [“MODE” “5” “1”]. Chọn lệnh giải phương trình bậc nhất 2 ẩn như hiển thị trên màn hình

Bước 2: Khai báo các hệ số của phương trình, các hệ số cách nhau bằng dấu “=”

Bước 3: Bấm tiếp “=” để xem kết quả. Có 4 trường hợp:

  • Phương trình 1 nghiệm (x)
  • Phương trình 2 nghiệm (x và y)
  • Phương trình vô nghiệm (No-Solution)
  • Phương trình vô số nghiệm (infinite Solution).

III. CÁCH TÍNH NHẨM NGHIỆM PHƯƠNG TRÌNH BẬC HAI

Xuất phát từ định lý Vi-ét, chúng ta có các dạng toán tính nhẩm như sau:

Dạng 1: A = 1, B = Tổng, C = Tích

Nếu phương trình có dạng x2 – (u+v)x + uv = 0 thì phương trình đó có hai nhiệm u và v.

Nếu phương trình có dạng x2 + (u+v)x + uv = 0 thì phương trình có hai nghiệm -u và –v.

Tóm lại:

  • x2 – (u+v)x + uv = 0 => x1 = u, x2 = v (1)
  • x2 + (u+v)x + uv = 0 => x1 = -u, x2 = -v

Như vậy, với dạng này chúng ta cần thực hiện 2 phép nhẩm: “Phân tích hệ số c thành tích và b thành tổng”. Trong hai phép nhẩm đó, chúng ta nên nhẩm hệ số c trước rồi kết hợp với b để tìm ra hai số thỏa mãn tích bằng c và tổng bằng b.

Khi tiến hành, bạn nhẩm trong đầu như sau: Tích của hai nghiệm bằng c, mà tổng lại bằng b.

Ví dụ phương trình:

x2 – 5x + 6 = 0
Nhẩm: “Tích của hai nghiệm bằng 6, mà tổng lại bằng 5”. Hai số đó là: 2 và 3 vì 6 = 2×3 và 5 = 2 + 3. Vậy phương trình có hai nghiệm x = 2, x = 3.

x2 – 7x + 10 = 0
Nhẩm: “Tích của hai nghiệm bằng 10, mà tổng lại bằng 7”. Hai số đó là: 2 và 5 vì 10 = 2×5 và 7 = 2 + 5. Vậy phương trình có hai nghiệm x = 2, x = 5.

Dạng 2: A + B + C = 0 và A – B + C = 0

x2 – (u+v)x + uv = 0 => x1 = u, x2 = v (1)

  • Nếu thay v = 1 vào (1) thì chúng ta sẽ có trường hợp nhẩm nghiệm quen thuộc a + b + c = 0, với a = 1, b = -(u+1), c = u.
  • Nếu thay v = -1 vào (1) thì bạn sẽ có trường hợp nhẩm nghiệm a – b + c = 0, với a = 1, b = -(u-1), c = -u.

Do loại này đã quá quen thuộc và thường gặp, nên bài viết không xét các ví dụ cho trường hợp này mà tập trung vào Dạng 1 và Dạng 3.

Dạng 3: Hai nghiệm là nghịch đảo của nhau

Nếu u ≠ 0 và v = 1/thì phương trình (1) có dạng:

Cách giải phương trình bậc 2 và tính nhẩm nghiệm PT bậc 2

Khi đó: Phương trình có hai nghiệm là nghịch đảo của nhau x= u, x = 1/u. Đây cũng là trường hợp hay gặp khi giải toán. Ví dụ phương trình:

  • 2x2 – 5x + 2 = 0 có hai nghiệm x = 2, x = 1/2
  • 3x2 – 10x + 3 = 0 có hai nghiệm x = 3, x = 1/3

IV. BÀI TẬP GIẢI PHƯƠNG TRÌNH BẬC HAI

Bài 1:

Dùng công thức nghiệm của phương trình bậc hai để giải các phương trình sau:

debai16

Hướng dẫn giải:

a) Phương trình bậc hai 2x²  – 7x + 3 = 0

Có: a = 2; b = -7; c = 3; Δ = b²  – 4ac = (-7)²  – 4.2.3 = 25 > 0

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9 - giải phương trình bậc hai

Vậy phương trình có hai nghiệm là 3 và Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 91/2.

b) Phương trình bậc hai 6x²  + x + 5 = 0

Có a = 6; b = 1; c = 5; Δ = b²  – 4ac = 1²  – 4.5.6 = -119 < 0

Vậy phương trình vô nghiệm.

c) Phương trình bậc hai 6x²  + x – 5 = 0

Có a = 6; b = 1; c = -5; Δ = b²  – 4ac = 1²  – 4.6.(-5) = 121 > 0

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9 - giải phương trình bậc hai

Vậy phương trình có hai nghiệm là -1 và 5/6.

d) Phương trình bậc hai 3x²  + 5x + 2 = 0

Có a = 3; b = 5; c = 2; Δ = b² – 4ac = 5²  – 4.3.2 = 1 > 0

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm là -1 và -2/3.

e) Phương trình bậc hai y² – 8y + 16 = 0

Có a = 1; b = -8; c = 16; Δ = b²  – 4ac = (-8)²  – 4.1.16 = 0.

Áp dụng công thức nghiệm ta có phương trình có nghiệm kép :

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có nghiệm kép y = 4.

f) Phương trình bậc hai 16z²  + 24z + 9 = 0

Có a = 16; b = 24; c = 9; Δ = b²  – 4ac = 24²  – 4.16.9 = 0

Áp dụng công thức nghiệm ta có phương trình có nghiệm kép:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có nghiệm kép – 3/4.

Bài 2:

Không giải phương trình, hãy xác định các hệ số a, b, c, tính biệt thức Δ và xác định số nghiệm của mỗi phương trình sau:

bài 15 giải phương trình bậc hai - toán 9 tập 2

Hướng dẫn giải:

a) 7x²  – 2x + 3 = 0

Có: a = 7; b = – 2; c = 3; Δ = b² – 4ac = (–2)²– 4.7.3 = – 80 < 0

Vậy phương trình vô nghiệm.

b) 5x² + 2√10x + 2 = 0

Có: a = 5; b = 2√10; c = 2; Δ = b² – 4ac = (2√10)²  – 4.2.5 = 0

Vậy phương trình có nghiệm kép.

c) Phương trình bậc hai

Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9
Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm phân biệt.

d) Phương trình bậc hai 1,7x² – 1,2x – 2,1 = 0

Có: a = 1,7; b = – 1,2; c = – 2,1; Δ = b² – 4ac = (–1,2)²  – 4.1,7.(–2,1) = 15,72 > 0

Vậy phương trình có hai nghiệm phân biệt.

Bài 3: Giải phương trình 4x– 2x – 6 = 0 (2)

Δ=(-2)– 4.4.(-6) = 4 + 96 = 100 > 0 => phương trình (2) đã cho có 2 nghiệm phân biệt.

x_{1} =frac{-(-2)+sqrt{100} }{2.4} =tfrac{3}{2} và x_{2} = frac{-(-2)-sqrt{100} }{2.4} =-1

Bài 4: Giải phương trình 2x– 7x + 3 = 0 (3)

Tính Δ = (-7)– 4.2.3 = 49 – 24= 25 > 0 => (3) có 2 nghiệm phân biệt:

x_{1} =frac{-(-7)+sqrt{25} }{2.2} = 3 và x_{1} =frac{-(-7)-sqrt{25} }{2.2} = frac{1}{2}

Để kiểm tra xem bạn đã tính nghiệm đúng chưa rất dễ, chỉ cần thay lần lượt x1, x2 vào phương trình 3, nếu ra kết quả bằng 0 là chuẩn. Ví dụ thay x1, 2.32-7.3+3=0.

Bài 5: Giải phương trình 3x2 + 2x + 5 = 0 (4)

Tính Δ = 2– 4.3.5 = -56 < 0 => phương trình (4) vô nghiệm.

Bài 6: Giải phương trình x2 – 4x +4 = 0 (5)

Tính Δ = (-4)– 4.4.1 = 0 => phương trình (5) có nghiệm kép:

x_{1} =x_{2} =frac{-(-4)}{2.1} =2

Trên đây Trường Trung Cấp Nghề Thương Mại Du Lịch Thanh Hoá đã giới thiệu đến quý bạn đọc lý thuyết về phương trình bậc hai cùng cách giải phương trình bậc hai cực hay và cực nhanh. Hi vọng, những thoog tin này hữu ích với bạn. Xem thêm cách giải phương trình bậc ba tại đường link này bạn nhé !

Bản quyền bài viết thuộc Trường Trung Cấp Nghề Thương Mại Du Lịch Thanh Hoá. Mọi hành vi sao chép đều là gian lận!
Nguồn chia sẻ: https://tmdl.edu.vn/cach-giai-phuong-trinh-bac-hai-cuc-hay-va-cach-nham-nghiem-nhanh-chong/

Trang chủ: tmdl.edu.vn
Danh mục bài: Giáo dục

Lương Sinh

Lương Sinh là một tác giả đầy nhiệt huyết trong lĩnh vực giáo dục, ngoại ngữ và kiến thức. Với hơn 10 năm kinh nghiệm làm việc trong ngành, cô đã tích lũy được rất nhiều kiến thức và kỹ năng quan trọng. Với tình yêu với ngôn ngữ và mong muốn chia sẻ kiến thức, Lương Sinh đã quyết định sáng lập blog tmdl.edu.vn. Trang web này không chỉ là nơi chia sẻ những kinh nghiệm và kiến thức cá nhân của cô, mà còn là một nguồn thông tin hữu ích cho những người quan tâm đến giáo dục, kiến thức và ngoại ngữ. Đặc biệt là tiếng Anh và tiếng Trung Quốc.
Back to top button